HIGH pH AND SALT AFFECTED SOILS

Assigned Reading: Sparks, Chapter 10.

Additional Reading McBride Chapter 8 (except 8.4c and 8.4d) Lindsay Chapter 6 and Agricultural Salinity Assessment and Management. ASCE. 1990. Chap. 3.

Carbonate Chemistry

Carbonates are Important in the Chemistry of Most High pH Soils

Equilibrium Solubility for the Carbonates of 2+ Metals

- This involves solid--solution--gas phase equilibria.
 - —Equilibrium is generally considered to be quite rapid relative to the alumino-silicates and hydrous oxides but slower than for gypsum and other evaporite minerals.

Crystalline forms

— Calcite

CaCO₃

Aragonite

CaCO₃

- A biogenic form slightly more soluble than calcite
- Dolomite

CaMg(CO₃)₂

- Forms very slowly in geological sediments
- Magnesite

 $MgCO_3$

- More soluble than calcite
- Siderite

FeCO₃

- flooded soils
- Rhodochrosite

MnCO₃

• flooded soils - solid solution with siderite

Carbonate species in water

- CO_2 in water: CO_2 + H_2O = $H_2CO_3*_{(aq)}$
 - $-H_2CO_3*$
 - Includes both hydrated carbon dioxide molecules and carbonic acid.
 - Hydrated CO₂ is about 400x H₂CO₃.)
 - Is a function of the partial pressure of CO₂ (Pco₂) only. It is independent of pH.

Carbonate species in water (cont.)

- In ambient air, CO₂ is 0.00035 atm or 0.035%.
- Soil Pco₂ is elevated due to respiration by roots and microbes.
 - -0.003 to 0.2 atm
 - Highest in flooded soils.
 - The rate of movement of CO_2 (or any gas) through water is about 0.00001x that in the air.
 - When soils very wet gas exchange with the ambient air is slow

Calculation of $[H_2CO_3^*]$

$$CO_2 + H_2O = H_2CO_3^* log K = -1.46$$

$$log (H_2CO_3^*) = -1.46 + log (Pco_2)$$

If $Pco_2 = .0003$ atm then

 $log (H_2CO_3^*) = -5.0$ (increases linearly with Pco_2)

Basic Equations

	$\log K$	
1. $H_2O + CO_2 = H_2CO_3*$	- 1.46	
2. $H_2CO_3^* = H^+ + HCO_3^-$	- 6.35	
3. $HCO_3 = H^+ + CO_3^2$	-10.33	
4. $H_2O + CO_2 = H^+ + HCO_3^-$	- 7.81	
(equation 1 and 2)		
5. $H_2O + CO_2 = 2H^+ + CO_3^{2-}$	-18.14	
(equations $1,2$, and 3)		
6. $H_2O = H^+ + OH^-$	$-14.00~({ m K_w})$	
7. $CaCO_3 = Ca^{2+} + CO_3^{2-}$	- 8.48 to -8.35	

Equilibrium Equations (cont.)

 For some calculations we need the electroneutrality equation for the CO₂/H₂O system

$$[H^+] = 2[CO_3^2] + [HCO_3] + [OH]$$
 (8)

- For some calculations we need the mass balance equation for carbon:
- $C_T = [H_2CO_3^*] + [CO_3^2] + [HCO_3]$ (9) • $C_T = Dissolved Inorganic Carbon (DIC)$

Equilibrium Equations (cont.)

- These equations can be used to express species in terms of other species e.g.
 H₂CO₃* and CO₃² can be expressed in terms of HCO₃⁻ and H⁺.
- In soils and natural waters with pH 5.5 9.5, HCO₃ is a very important anion.
- —In low pH soils, organic anions and SO₄²⁻ become relatively more important.
- $-CO_3^{2-}$ is important only in very alkaline soils.

CO₂ in water with no Carbonate Solids

Alkalinity

Alk = $[HCO_3]$ + $2[CO_3^2]$ + [OH] - $[H^+]$ + titratable organic anions

- Alkalinity is normally determined by titration with acid to pH 4.8 (pH at which all DIC is in the form of H_2CO_3 *).
 - In MINTEQ Alk is given in cmol_cL⁻¹
 Alk = [HCO₃-] + 2[CO₃²-]
- In the range of 5.6-9.5 alkalinity is primarily due to HCO_3 .

Effect of pH and P_{CO2} on $[HCO_3^-]$ and $[CO_3^{-2}]$

• From equations 1 & 2 we get equation

$$H_2O + CO_2 = H^+ + HCO_3^-$$
 log K = -7.81
log (HCO₃-) = pH + log Pco₂ - 7.81 (10)

$$K = \frac{(H^+)(HCO_3^-)}{P_{CO_2}}$$

Effect of pH and P_{CO2} on $[HCO_3^-]$ and $[CO_3^{2-}]$ (cont.)

- On a log (HCO₃) vs. pH plot the slope = +1
- From equations 1, 2, and 3 we get equation 5 (see McBride Fig. 8.2)

$$H_2O + CO_2 = 2H^+ + CO_3^{2-}$$
 log K = -18.14

-From the equilibrium constant expressions

$$\bullet \log (CO_3^{2-}) = 2pH + \log Pco_2 - 18.14$$

-On a log (CO₃²⁻) vs. pH plot the slope = +2

Effect of pH and P_{CO2} on $[HCO_3^-]$ and $[CO_3^{2-}]$ (cont.)

-Example: pH = 7.0, Pco₂ = 0.0050 atm

$$\bullet \log (HCO_2^-) = 7.0 - 2.3 - 7.81$$

$$log (HCO_2) = -3.1$$

$$\bullet \log (CO_3^{2-}) = 2(7.0) - 2.3 - 18.14$$

$$Log (CO_3^{2-}) = -6.44$$

Review of Basic Equations

	$\underline{\mathbf{log}\;\mathbf{K}}$	
1. $H_2O + CO_2 = H_2CO_3*$	- 1.46	
2. $H_2CO_3^* = H^+ + HCO_3^-$	- 6.35	
3. $HCO_3^- = H^+ + CO_3^{-2}$	-10.33	
4. $H_2O + CO_2 = H^+ + HCO_3^-$	- 7.81	
(equation 1 and 2)		
5. $H_2O + CO_2 = 2H^+ + CO_3^{2-}$	-18.14	
(equations $1,2$, and 3)		
6. $H_2O = H^+ + OH^-$	-14.00 (K_w)	
7. $CaCO_{o} = Ca^{2+} + CO_{o}^{2-}$	- 8.48 to -8.35	

Dissolution of Calcite

- Combining eqn. 7 with eqn. 5. CaCO₃ + 2H⁺ = H₂O + CO₂ + Ca²⁺ log K = 9.66 (11)
- Write the equilibrium constant then take the log of both sides.

$$9.79 = \log Pco_2 + \log Ca^{2+} + 2 pH$$
 (12) $\log [Ca^{2+}] = 9.79 - \log Pco_2 - 2pH$

Fixed [Ca²⁺]
 e.g. Fix(Ca²⁺) at 0.010 M, Pco₂ = 10^{-3.5}
 pH = 7.6

pH in Equilibrium with Calcite and No other Acidity or Alkalinity

- Species Ca²⁺, H₂CO₃*, HCO₃-, H⁺, CO₃²⁻,
 OH-
- Use eqns. 1, 2, 3, 6, 7 plus the charge balance.
- Charge balance

$$2[Ca^{2+}] + [H^+] = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$$
 (13)

pH in Equilibrium with Calcite (cont)

- At the pH of the equilibrium system
 - [H⁺], [CO₃²⁻], and [OH⁻] ≈ 0
 - Thus the charge balance is $2[Ca^{2+}] \approx [HCO_3]$
 - Use eqn.10 to calculate $[HCO_3]$ assuming $g_{HCO3} = 1$, and substitute for $[HCO_3]$ using equation 13.
 - Then (14)

$$2[Ca^{2+}] = \frac{(10^{-781})(P_{CO_2})}{[H^+]}$$

pH in Equilibrium with Calcite (cont)

- Taking the log of both sides
 log [Ca²⁺] = -8.11 + log Pco₂ + pH
- equate to eqn. 12

$$-8.11 + \log Pco_2 + pH = 9.79 - \log Pco_2 - 2pH$$

$$3 pH = 17.90 - 2 log Pco_2$$

• pH is a function of Pco₂, only.

$$-If Pco_2 = 10^{-3.5}, pH = 8.3$$

 This is often the reference pH for potential CEC.

$$-If Pco_2 = 10^{-2.5}, pH = 7.6$$

Equilibrium with Calcite (cont.)

 Calculate the Ca²⁺ concentration using equation 12 and the HCO₃⁻ concentration using equation 10 or the charge balance

-for
$$Pco_2 = 10^{-3.5}$$
, $[Ca^{2+}] = 5.0 \times 10^{-4} \text{M}$
-for $Pco_2 = 10^{-2.5}$, $[Ca^{2+}] = 1.2 \times 10^{-3} \text{M}$

pH in Equilibrium with Calcite (cont.)

- In most soils 2[Ca²⁺] does not equal [HCO₃-]
 - If $[Ca^{2+}] = 0.010 \text{ M}$ and $Pco_2 = 0.005$, then $2[Ca^{2+}] > [HCO_3]$
 - From . 12, pH = 7.05.
 - From equation 10. [HCO₃·] = $1.0 \times 10^{-3} M$ and anions other than bicarbonate make up most of the anionic charge.
 - In soils with Ca controlled by gypsum [Ca²⁺] > 0.01 M.

pH with calcite and added alkalinity

• Soils containing bicarbonate of Na⁺ and Mg²⁺ and 2[Ca²⁺] is <[HCO₃⁻]

 $-If [HCO_3^-] = 0.010 M and Pco_2 = 0.005$

- From equation 10 pH = 8.05
- from eqn. 12, and $[Ca^{2+}] = 1.0 \times 10^{-4} M$

SWELLING AND DISPERSION OF CHARGED PARTICLES IN SOILS

Charged surfaces

- Charged Surfaces
 - -pH dependent
 - hydrous oxides
 - silicate clay edges
 - organic matter

Example: Permanent Charge Clays

-Monovalent cations near charged

Diffuse double layer thickness (DDL)

- DDL is a function of C_o and z of cation.
 - -Example: 10⁻³ mol L⁻¹ NaCl
 - DDL for smectite ≈ 20 nm
 - Increasing salt concentration reduces DDL and hence reduces swelling pressure
 - In Ca²⁺, less than 10 Å
 - Tactoid formation

Diffuse double layer thickness (cont.)

- Swelling of Clays
 - -Monovalent cations
 - At low ionic strength platelets are at the maximum distance apart.
 - Divalent and trivalent
 - Tactoid formation

Free swelling of a clay paste

• Soil moisture tension = 0

Free swelling of a clay paste (cont)

Table 8.3. Swelling Volumes of Metal-Exchanged Smectites in Water (cm³/g)

H ⁺	Li ⁺	Na ⁺	K ⁺	Ca ²⁺	Ba ²⁺
(2.20) ^a	10.8	11.1	8.6	2.5	2.5

^aClay has probably decomposed to the Al³⁺-saturated form.

• Increasing salt concentration reduces DDL thickness and hence reduces swelling pressure

Aggregation of smectites with increasing salt concentration (McBride Fig 8.6)

Flocculation

- High salt concentration
- High charge cations
- With monovalent ions the critical concentration for coagulation (CCC)of smectite clay is high. (0.025-0.150 M)
- With multicharge ions the CCC is low. $(0.0005-0.002 \text{ M for } \text{M}^{2+}; 1 \times 10^{-5} 1 \times 10^{-4} \text{ M for } \text{M}^{3+})$

Flocculation (cont.)

- For pH dependent charge minerals
 Flocculation at high CCC values or at pznc
- Divalent and higher charge ions that form surface complexes which neutralize charge and can produce cation bridges with organic matter.
 - This causes flocculation even at low concentrations (low CCC)

SODICITY AND SALINITY IN ARID REGION SOILS

Definitions

- Saline soil = high salts
- Sodic soil = high Na

Extent of Agricultural Salt Problems

- United States
 - —About 30% of the land has a moderate to severe potential for saline-sodic problems.
 - -Western states have a high potential for problems with salinity/sodicity.
 - -Example: California:
 - 1,720,000 ha are saline or sodic
 - 1,100,000 ha have a water table at a depth of 1.5 m or less.
 - 1,400,000 ha have problems with water quality.

Measures of salinity and alkalinity(connect to water quality)

- Residual Sodium Carbonate (RSC)
 - Measure excess alkalinity in irrigation water

$$RSC = [HCO_3^- + CO_3^{2-}] - [Ca^{2+} + Mg^{2+}]$$

- RSC = the acidity (mmoles_v L⁻¹) that is needed to neutralize the solution alkalinity in excess of the alkalinity associated with Ca and Mg.
- Titrate to pH = 4.8
- Any excess of CO₃² or HCO₃ not precipitated by Mg or Ca during evaporation in soils is alkalinity hazard and can result in high pH values soil

RSC > 2.5 (mmole L-1) Hazardous
RSC = 1.25 - 2.5 Potentially
hazardous
RSC < 1.25 Generally safe

Salinity Hazard

- Electrical Conductivity (EC)
 - -Principles
 - Conductivity is the ease with which an electric current is carried through a solution
 - Conductivity is proportional to the quantity of ions (quantity of ionic charge) in solution.
- Electrical conductance
 - -Reciprocal of electrical resistance
 - ohms (ohms-1), mho
 - Now defined as Siemen (1 Siemen = 1 mho)

Electrical conductivity (EC)

- EC = Conductance(Siemens) x distance (cm) \div area (cm²)
- Units: $S/cm = mho cm^{-1}$.
 - -mho cm⁻¹ is too large soil solutions
 - -Use mmho cm $^{-1}$ = mS cm $^{-1}$ = dS m $^{-1}$
 - -Soil scientist generally use dS m⁻¹
 - -McBride uses mS cm⁻¹

EC of saturated soil paste

- In the US soil salinity is usually determined by EC of saturated paste extracts.
 - -Distilled water is added to dried soil until is is at the saturation limit,
 - Them EC is measured on the extracted solution.

EC of saturated soil paste (cont.)

- Plants vary in response to salt
 - EC values over 2 dS m⁻¹ (m mho cm⁻¹) suggests potential for problems
 - -Value > 4 means that only tolerant plants will survive.
- 1:1 Soil extracts are also used.
 - -Different interpretations are needed.

Use of Ion Exchange Theory to predict the long-term effect of irrigation water

- Vanselow equation
 - -Vanselow selectivity coefficient is used in California and by some investigators outside of CA.
 - -Most use Gapon
- Gapon equation

$$Ca_{1/2}X + 2Na^{+} = 2NaX + 1/2Ca$$

Gapon Equation

• Mg²⁺ and Ca²⁺ are considered as one ion

$$K_G = \frac{N_{Na}[[Ca^{2+}] + [Mg^{2+}]]^{\frac{1}{2}}}{N_{Ca+Mg}[Na^{+}]}$$

• K = 0.015 if solution concentrations are in mmol L⁻¹

Gapon Equation (cont.)

- With long-term addition of irrigation water the soil will be in equilibrium with the water.
- Can predict the equilibrium N_{Na #} (charge fraction of Na on the soil particles)
- With high Na on the exchange sites the soil particles can disperse.

Gapon Equation (cont.)

$$\frac{N_{\text{Na}}}{N_{\text{Ca+Mg}}} = K_{\text{G}} \frac{[\text{Na}^{+}]}{[[\text{Ca}^{2+}] + [\text{Mg}^{2+}]]^{\frac{1}{2}}}$$

$$\frac{N_{Na}}{N_{Ca+Mg}} = \frac{E}{CEC - NaX} = K_{G}SAR$$

SAR: Sodium Adsorption Ratio

• An irrigation water term

SAR =
$$\frac{[Na^{+}]}{[[Ca^{2+}] + [Mg^{2+}]]^{\frac{1}{2}}}$$

Exchangeable Sodium Ratio (ESR)

• ESR: Exchangeable Sodium Ratio (a soil term)

$$\frac{N_{Na}}{N_{Ca+Mg}} = ESR$$

$$ESR = K_G(SAR)$$

Exchangeable Sodium Percentage (ESP) (a soil term)

• ESR is the equilibrium fraction of Na on exchange sites expressed as a percentage.

$$\frac{ENaX}{CEC}$$
:100 = ESP

$$\frac{\text{ESP}}{100 - \text{ESP}} = \text{ESR} = \text{K}_{\text{G}} \text{SAR}$$

Soil structure stability

- Role of salinity and sodicity in swelling and dispersion
 - -Clay swelling enables individual platelets to separate and form a stable dispersion
- This swelling can be suppressed by high salt concentration
- Multivalent exchange cations, Ca, Mg, Al, counteract swelling by forming electrostatic bridges between adjacent platelets (platelets stack), "quasi-crystals"

Soil structure stability (cont.)

- The Na/(Ca+Mg) ratio controls particle size, arrangement, and dispersibility.
- As ESP increases, soil aggregate structure deteriorates. This causes reduced permeability and drainage, poor aeration, surface crusting and shrink-swell under cycles of wetting and drying.

Traditional	Classification of Salinity
	and Sodicity

ESP%

15%	pH > 9 Sodic Poor Dispersed	pH < 8.5 Saline-sodic Fair-good Flocculated
1370	pH < 8.5	pH<8.5 Saline Good Flocculated
1	NORMAL	

4 dSm⁻¹

Brief Summary

- The chemistry of dissolved inorganic carbon (DIC) is important in soils.
- Alkalinity in most soils is mostly bicarbonate.
- High pH soils generally contain calcite
 - —Calcite buffers the pH in high pH soils.
- Soil clays and OM can disperse in Na⁺, Li⁺, and K⁺.
 - The dispersion is the result of the surface potential and the double layer effects

Brief Summary (cont.)

- Double layer thickness decreases at high salt concentrations.
- Smectites form tactoids in divalent salts and easily flocculate.
- The effects of long-term of irrigation water application on Na⁺ saturation in soils can be predicted by the Gapon ion exchange equation
- Salinity is measured by EC.
- The EC of soil pastes or 1:1 suspensions is used to predict salinity hazard in soils.